NRC Seeks Public Comment re Development of Regulatory Basis for Alternative Means of Disposal of GTCC and Transuranic Waste

On February 14, 2018, the U.S. Nuclear Regulatory Commission (NRC) issued a Federal Register notice announcing that the agency is seeking stakeholder participation and involvement in identifying the various technical issues that should be considered in the development of a regulatory basis for the disposal of Greater-than-Class C (GTCC) and transuranic radioactive waste through means other than a deep geologic disposal, including near surface disposal.  (See 83 Federal Register 6,475 dated February 14, 2018.)

As part of the process, the NRC is requesting that interested stakeholders respond to specific questions contained in the Federal Register notice.  Comments are due by April 16, 2018.  Comments considered after this date will be considered if it is practical to do so, but the NRC is only able to ensure consideration of comments received on or before the deadline.

Specific Request for Comment

The NRC is seeking stakeholder participation and involvement in identifying the various technical issues that should be considered in the development of a draft regulatory basis for the disposal of GTCC and transuranic radioactive waste through means other than a deep geologic disposal, including near surface disposal.  To assist in this process, the NRC staff is requesting that interested stakeholders respond to the questions below.  In addition, the NRC staff has conducted some initial technical analyses to assist its understanding of potential hazards with near surface disposal of GTCC and transuranic wastes, which are contained in draft “NRC Staff Analyses Identifying Potential Issues Associated with the Disposal of Greater-Than-Class C Low- Level Radioactive Waste.”  The draft analyses should assist in providing responses to the following questions:

  1. What are the important radionuclides that need to be considered for the disposal of the GTCC and transuranic wastes?

The U.S. Department of Energy (DOE) has described three broad categories of GTCC wastes, including a range of transuranic radionuclides, in its “Final Environmental Impact Statement for the Disposal of Greater-than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste.”  (See LLW Notes, November/December 2017, pp. 1, 23-28.)  The three categories are entitled activated metals, sealed sources and other wastes.  The attributes (i.e., radionuclide concentrations, heat generation, and waste form) vary significantly between the three categories.  Certain waste streams represent a very specific waste form (i.e., stainless steel for most activated metals; very concentrated amounts in sealed sources) that may require specific treatment to mitigate potential safety, security and criticality concerns.  Some waste streams may contain sufficient quantities of specific radionuclides that will present a significant thermal output and/or gas generation through radiolysis.  Still other waste streams may contain a significant quantity of fissile radionuclides (i.e., some isotopes of uranium and plutonium).  The NRC is interested in identifying those radionuclides that could be important for evaluating the safety and security of storage associated with the operational period at a disposal facility and the post-closure period (including inadvertent intruder protection).  Additionally, the NRC is interested in obtaining available data and information to support the characteristics of GTCC and transuranic wastes.

  1. How might GTCC and transuranic wastes affect the safety and security of a disposal facility during operations (i.e., pre-closure period)?

The presence of sufficient quantities of high activity radionuclides and/or fissile radionuclides in GTCC and transuranic wastes may impact the design and operational activities associated with a disposal facility prior to disposal.  The NRC is interested in identifying those design and operational activities at a disposal facility that may be impacted by GTCC and transuranic wastes.  For example, the requirements in 10 CFR Part 73 would require licensees to develop safeguards systems to protect against acts of radiological sabotage and to prevent the theft or diversion of Special Nuclear Material (i.e., transuranic waste such as plutonium, uranium-233 or uranium enriched in the isotopes uranium-233 or uranium-235) if a sufficient amount of Special Nuclear Material were present above ground at the disposal facility. 

  1. How might GTCC and transuranic wastes affect disposal facility design for post-closure safety including protection of an inadvertent intruder?

The NRC is considering disposal units (i.e., a single trench, borehole, and vault) that would contain a single category of waste (i.e., sealed sources) as well as disposal units that contain a mixture of all three waste types.  However, the NRC believes the best approach for understanding the issues would be to assume that waste within a disposal unit would be separated by the waste category and not be co-mingled.  Such an approach could provide a clear understanding of the issues associated with how a specific waste category might affect disposal facility design.  Certain waste streams associated with GTCC and transuranic wastes have larger inventories and concentrations of radionuclides than was typically considered at low-level radioactive waste disposal facilities.  For example, certain GTCC and transuranic wastes in sufficient quantities have the potential for significant thermal output that could affect degradation processes within a disposal unit and hydrogen gas generation through radiolysis that could also affect degradation processes of the waste package and waste form.  Additionally, waste streams associated with GTCC and transuranic wastes may have fissile materials that require facilities to be designed to limit the potential for a criticality event or limit the amount of fissile material that can be disposed.  There is a potential balance between security/safety and economic feasibility of design, construction and operation.  The NRC would like to hear from the stakeholders on these aspects as well.  The information provided on economic feasibility would be in concert with the NRC’s strategies on examining the cumulative effects of potential regulatory actions.  The NRC is interested in identifying the various scenarios that should be considered in evaluating the post-closure safety for the disposal of GTCC and transuranic waste—especially scenarios associated with specific issues and concerns that may not have been previously considered for commercial disposal facilities (i.e., synergistic effects of the thermal output on geochemical processes affecting release of radionuclides).

Submitting Comments

Interested stakeholders may submit comments by any of the following methods:

  •   Email Comments to:  Email comments to Rulemaking.Comments@nrc.gov.  If you do not receive an automatic email reply confirming receipt, then contact the NRC at (301) 415-1677.
  •   Fax comments to:  Fax comments to Secretary, U.S. Nuclear Regulatory Commission, at (301) 415-1101.
  •   Mail comments to:  Mail comments to Secretary, U.S. Nuclear Regulatory Commission, Washington, DC 20555– 0001, ATTN: Rulemakings and Adjudications Staff.
  •   Hand deliver comments to:  Comments may be hand delivered to the NRC at 11555 Rockville Pike, Rockville, Maryland 20852 between 7:30 a.m. to 4:15 p.m.

Interested stakeholders are reminded to please include Docket ID NRC 2017-0081 in the subject line of any comment submission.

Background

 

The NRC’s “Licensing Requirements for Land Disposal of Radioactive Waste” are provided in 10 CFR Part 61.  Section 10 CFR 61.2, “Definitions,” provides that waste as used in Part 61 means those low-level radioactive wastes containing source, special nuclear or byproduct material that are acceptable for disposal in a land disposal facility.  The definition also indicates that low- level radioactive waste means radioactive waste not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel or byproduct material as defined in paragraphs (2), (3), and (4) of the definition of byproduct material in § 20.1003.

The Statements of Consideration (SOC) for the 10 CFR Part 61 proposed rule explained that not all waste may be suitable for disposal in the near surface.  Specifically, Section IV, “Purpose and Scope,” of the SOC indicates that, while 10 CFR Part 61 was intended to deal with the disposal of most low-level radioactive waste defined by the Low-Level Radioactive Waste Policy Act, the 10 CFR Part 61 waste classification system identified some low-level radioactive wastes that are not suitable for disposal under its regulatory framework, and alternative methods would have to be used.

In § 61.55, “Waste classification,” the NRC developed a classification system for waste for near surface disposal, which categorizes waste as Class A, B or C.  This provision also describes waste that is not generally acceptable for near-surface disposal, whose disposal methods must be more stringent than those specified for Class C waste.  This waste is referred to as GTCC waste.

Nuclear power reactors, facilities supporting the nuclear fuel cycle and other facilities and licensees outside of the nuclear fuel cycle generate the GTCC waste.  This class of wastes include:

  • plutonium- contaminated nuclear fuel cycle wastes;
  • activated metals;
  • sealed sources; and,
  • radioisotope product manufacturing wastes – i.e., wastes “occasionally generated as part of manufacture of sealed sources, radiopharmaceutical products and other materials used for industrial, education, and medical applications.”

Transuranic waste is not included in the § 61.2 definition of low-level radioactive waste.  In a 1988 amendment to the Atomic Energy Act of 1954, as amended, a definition for transuranic was added.  Transuranic waste is defined as “material contaminated with elements that have an atomic number greater than 92, including neptunium, plutonium, americium, and curium, and that are in concentrations greater than 10 nanocuries per gram [(nCi/g)], or in such other concentrations as the [U.S.] Nuclear Regulatory Commission may prescribe to protect the public health and safety.”  Transuranic waste is a byproduct of nuclear research and power production and is primarily produced from spent fuel recycling, medical isotope production or nuclear weapons fabrication.  The waste may consist of rags, tools and laboratory equipment contaminated with organic and inorganic residues.

The identification and evaluation of regulatory concerns associated with land disposal of GTCC and transuranic waste will largely depend on the characteristics of the wastes – i.e., isotopes; concentrations and volumes of waste; and, physical and chemical properties.  The variable characteristics of the waste can influence the decision regarding the appropriate regulatory approach to use for management and disposal of these wastes.  Overly conservative assumptions for the inventory and characteristics could significantly limit disposal options, whereas, overly optimistic assumptions with respect to characteristics could lead to a disposal facility that may not provide adequate protection of public health and safety and security.

For additional information, please contact Cardelia Maupin of the NRC’s Office of Nuclear Material Safety and Safeguards (NMSS) at (301) 415–4127 or at Cardelia.Maupin@nrc.gov.

NRC to Conduct Very Low-Level Radioactive Waste Scoping Study

On February 14, 2018, the U.S. Nuclear Regulatory Commission (NRC) issued a Federal Register notice announcing the agency’s plans to conduct a very low-level radioactive waste (VLLW) scoping study to identify possible options to improve and strengthen the NRC’s regulatory framework for the disposal of the anticipated large volumes of VLLW associated with the decommissioning of nuclear power plants and material sites, as well as waste that might be generated by alternative waste streams that may be created by operating reprocessing facilities or a radiological event.  (See 83 Federal Register 6,619 dated February 14, 2018.)

As part of the process, the NRC is seeking stakeholder input and perspectives.  Respondents are asked to consider specific questions posed by the NRC staff and other federal agencies in the Federal Register notice.  Comments are due by May 15, 2018.  Comments considered after this date will be considered if it is practical to do so, but the NRC is only able to ensure consideration of comments received on or before the deadline.

Specific Request for Comment

The NRC is interested in receiving comments from a broad range of stakeholders including professional organizations, licensees, Agreement States and members of the public.  Likewise, interested stakeholders with insight into relevant international initiatives are invited to provide their perspectives regarding international best practices related to VLLW disposal or other experiences that the NRC staff should consider.  All comments will be considered and the results of the scoping study will be documented in a publicly available report, which will inform the Commission of the staff’s recommendation for addressing VLLW disposal.

All comments that are to receive consideration in the VLLW Scoping Study must be submitted electronically or in writing.  Respondents are asked to consider the background material (see below) when preparing their comments.  In responding, commenters are encouraged to provide specific suggestions and the basis for suggestions offered.  Specifically, the NRC staff requests comment on the following questions:

  1. The United States does not have a formal regulatory definition of VLLW. What should the NRC consider in developing its own regulatory definition for VLLW?  Is there another definition of VLLW that should be considered?  Provide a basis for your response.
  1. The existing regulatory framework within 10 CFR 61.55 divides low-level radioactive waste into four categories: Class A, Class B, Class C, and GTCC. Should the NRC revise the waste classification system to establish a new category for VLLW?  What criteria should NRC consider in establishing the boundary between Class A and VLLW categories?
  1. The NRC’s alternative disposal request guidance entitled, ‘‘Review, Approval, and Documentation of Low- Activity Waste Disposals in Accordance with 10 CFR 20.2002 and 10 CFR 40.13(a),’’ which is undergoing a revision, allows for alternative disposal methods that are different from those already defined in the regulations and is most often used for burial of waste in hazardous or solid waste landfills permitted under the Resource Conservation and Recovery Act (RCRA). Should the NRC expand the existing guidance to include VLLW disposal or consider the development of a new guidance for VLLW disposal?  Why or why not?
  1. If the NRC were to create a new waste category for VLLW in 10 CFR Part 61, what potential compatibility issues related to the approval of VLLW disposal by NRC Agreement States need to be considered and addressed? How might defining VLLW affect NRC Agreement State regulatory programs in terms of additional responsibilities or resources?
  1. Following the Low-Level Radioactive Waste Policy Amendments Act of 1985, states formed regional compacts for the disposal of low-level radioactive waste. If the NRC were to create a new waste category for VLLW, does it fall within regional compact authority to control VLLW management and disposal?  How might defining VLLW affect regional compacts in terms of additional responsibilities or resources?
  1. U.S. Environmental Protection Agency (EPA)-imposed waste analysis requirements for facilities that generate, treat, store and dispose of hazardous wastes are defined in 40 CFR Parts 264 through 270. How would NRC incorporate and apply waste analysis requirements for VLLW at RCRA Subtitle C and D facilities?  Should the NRC impose concentration limits and/or treatment standards for VLLW disposal?
  1. Are there any unintended consequences associated with developing a VLLW waste category?
  1. What analytical methods/tools should be used to assess the risk of disposing of VLLW at licensed low-level radioactive waste disposal facilities or RCRA Subtitle C and D facilities — i.e., generic or site- specific?
  1. How should economic factors be considered in the VLLW scoping study?

Submitting Comments

Interested stakeholders may submit comments by any of the following methods:

  •   Mail comments to:  May Ma, Office of Administration, Mail Stop: OWFN–2– A13, U.S. Nuclear Regulatory Commission, Washington, DC 20555– 0001.

Background

In 2007, following developments in the national program for low-level radioactive waste disposal, as well as changes in the regulatory environment, the NRC conducted a strategic assessment of its regulatory program for low-level radioactive waste.  The results of this assessment were published in late 2007 in SECY–07–0180, “Strategic Assessment of Low-Level Radioactive Waste Regulatory Program.”  The strategic assessment identified the need to coordinate with other agencies on consistency in regulating low activity waste (LAW) disposal and to develop guidance that summarizes disposition options for low-end materials and waste.

In 2016, the NRC staff conducted a programmatic assessment of the low-level radioactive waste program to identify and prioritize tasks that the NRC could undertake to ensure a stable, reliable and adaptable regulatory framework for effective low-level radioactive waste management.  The results of this assessment were published in October 2016 in SECY–16–0118, “Programmatic Assessment of Low-Level Radioactive Waste Regulatory Program.”  The programmatic assessment identified the need to perform a LAW scoping study as a medium priority.

In International Atomic Energy Agency (IAEA) Safety Guide No. GSG– 1, “Classification of Radioactive Waste,” the IAEA defines VLLW as waste that does not meet the criteria of exempt waste, but does not need a high level of containment and isolation and is therefore suitable for disposal in a near surface landfill type facility with limited regulatory control.  The NRC currently does not have a formal regulatory definition for VLLW, nor has it adopted the IAEA definition.  However, the NRC uses the term VLLW consistent with the international regulatory structure.  In general, the NRC considers VLLW as material containing some residual radioactivity, including naturally occurring radionuclides that may be safely disposed of in hazardous or municipal solid waste landfills.

The LAW scoping study, which was later renamed the VLLW scoping study, will combine several tasks initially defined in the 2007 strategic assessment into one. These tasks include:

  • coordinating with other agencies on consistency in regulating LAW;
  • developing guidance that summarizes disposition options for low-end materials and waste; and,
  • promulgating a rule for disposal of LAW.

As part of the scoping study, the NRC will also evaluate regulatory options that would define the conditions under which LAW, including mixed waste, could be disposed of in Resource Conservation and Recovery Act (RCRA) Subtitle C hazardous waste facilities.

Consistent with SECY–16–0118, the NRC is conducting this VLLW Scoping Study, which will consider disposal of waste as defined by 10 CFR Part 61 as the isolation, by emplacement in a land disposal facility, of radioactive wastes from the biosphere that is inhabited by man and that contains his food chains.  As such, the scoping study will not address non-disposal related disposition pathways including unrestricted release, clearance, reuse or recycle of materials.

The purpose of the VLLW scoping study is to identify possible options to improve and strengthen the NRC’s regulatory framework for the disposal of the anticipated large volumes of VLLW associated with the decommissioning of nuclear power plants and waste that might be generated by alternative waste streams that may be created by fuel reprocessing or a radiological event.  Additionally, the NRC plans to evaluate regulatory options that could define the conditions under which VLLW, including mixed waste, could be disposed of in RCRA hazardous waste facilities.

For additional information, please contact Maurice Heath of the NRC’s Office of Nuclear Material Safety and Safeguards (NMSS) at (301) 415–3137 or at Maurice.Heath@nrc.gov.